NAME: _____ PROBABILITY

.

DATE: _____ PERIOD: _____

<u>**Do</u> <u>Now</u>!** (Topic #3)</u>

Vou	randomly choose one number below.	Find the	favorable outcomes of the event		
10 11 10 14 15 16 17 10 10					
	10, 11, 12, 10, .	17, 10,	10, 17, 18, 19		
1.	Choosing a 14	2.	Choosing an even number		
3.	Choosing an odd number less than 15	4.	Choosing a number greater than16		
5.	Choosing a number divisible by 2				
You	randomly choose one number below. I	Find the	e probability of the event.		
2, 5, 6, 9, 13, 16, 22, 25, 27, 31					
6.	Choosing an even number	7.	Choosing an odd number		
8.	Choosing a prime number	9.	Choosing a number greater than 30		
10.	Choosing a number less than 2				
10.	Choosing a number less than 2				

NAME: ___

PROBABILITY

DATE: ____

PERIOD:

How Do You Find the Theoretical Probability of an Event? (Topic #3)

Theoretical Probability is based on mathematical reasoning - "What should happen?"

The following formula can be used to find the probability, P, that an event will occur.

Theoretical Probability

The probability of an event is a ratio that compares the number of favorable outcomes to the number of possible outcomes.

$P(event) = \frac{number of favorable outcomes}{number of possible outcomes}$

EXAMPLE 1: Finding the Probability of an Event

There are six equally likely outcomes if a number cube with sides labeled 1 through 6 is rolled.

- a) Find P(6) or the probability of rolling a 6. Write your answer as a fraction, percent, and decimal.
- b) Find the probability of rolling a 2, 3, or 4 on the number cube. Write your answer as a fraction, percent, and decimal.

<u>PRACTICE</u>: Read each question carefully. Show your work.

- 1. A coin is tossed. Find the probability of the coin landing on heads. Write your answer as a fraction, percent, and decimal.
- 2. A spinner has 10 equal sections labeled A-J. Find the probability of each event. Write each answer as a fraction, percent, and decimal.
 - a) P(F) b) P(D or G) c) P(vowel)

Complementary events are two events in which either one or the other must happen, but they cannot happen at the same time. *For example*, a coin can either land on heads or *not* land on heads. The sum of the probability of an event and its complement is 1 or 100%.

EXAMPLE 2: Finding the Probability of the Complement

Find the probability of *not* rolling a 6 in Example 1.

<u>PRACTICE</u>: Read each question carefully. Show your work.

- 3. A bag contains 5 blue, 8 red, and 7 green marbles. A marble is selected at random. Find the probability the marble is *not* red.
- 4. Mr. Harada surveyed his class and discovered that 30% of his students have blue eyes. Identify the complement of this event. Then find the probability.

EXAMPLE 3: Using Theoretical Probability

The theoretical probability that you randomly choose a green marble from a bag is $\frac{3}{8}$. There are 40 marbles in the bag. How many are green?

PRACTICE: Read each question carefully. Show your work.

5. The probability that you randomly draw a short straw from a group of 50 straws is $\frac{9}{25}$. How many are short straws?

6. The theoretical probability that you spin an odd number on a spinner is 0.6. The spinner has 10 sections. How many sections have odd numbers?

7. The probability that you randomly select a blue crayon from a box of 40 crayons is $\frac{3}{20}$. How many are blue crayons?

44

NAME: _____ PROBABILITY

DATE: _____

PERIOD:

HOMEWORK - (Topic #3)

Finding the Theoretical Probability of an Event

Theoretical Probability

The probability of an event is a ratio that compares the number of favorable outcomes to the number of possible outcomes.

$P(event) = \frac{number of favorable outcomes}{number of possible outcomes}$

- 1. An event has a theoretical probability of 0.5. What does this mean?
- 2. Describe an event that has a theoretical probability of $\frac{1}{4}$.

Use the spinner to determine the theoretical probability of the event.

3. P(1)

4. P (odd number)

5. P (multiple of 2)

6. P (number less than 7)

- 7. P (7) 8. P (2 or 5)
- 9. Each letter of the alphabet is printed on an index card. What is the theoretical probability of randomly choosing any letter not Z?

10. On a game show, a contestant randomly chooses a chip from a bag that contains numbers and strikes. The theoretical probability of choosing a strike is $\frac{3}{10}$. There are 30 chips in the bag. How many are strikes? **Show your work below**.

The bar graph shows the birthday months of all 200 employees at a local business.

- 11. What is the theoretical probability of randomly choosing a person at the business who was born in a month with an R in its name?
- 12. What is the theoretical probability of randomly choosing a person at the business who has a birthday in the first half of the year?

NAME:	CK
PROBABILITY	4

KEU	
12	
n.	

PERIOD: _____

Do Now! (Topic #3)

You	You randomly choose one number below. Find the favorable outcomes of the event.				
	10, 11, 12, 13,	14, 15, 16, 17, 18, 19			
1.	Choosing a 14	2. Choosing an even number			
	14	10, 12, 14, 16, 18			
3.	Choosing an odd number less than 15	4. Choosing a number greater than 16			
	/ 3, //	17, 18, 19			
5.	Choosing a number divisible by 2				
	10, 12, 14, 16, 18				
You	randomly choose one number below.	Find the probability of the event.			
	2, 5, 6, 9, 15	, 10, 22, 25, 21, 51			
5.	Choosing an even number	7. Choosing an odd number			
	$\frac{4}{10} = \frac{2}{5}$	$\frac{6}{10} = \frac{3}{5}$			
3.	Choosing a prime number	9. Choosing a number greater than 30			
	$\frac{4}{10} = \frac{2}{5}$	10			
10.	Choosing a number less than 2				
	$\frac{0}{10} = 0$				

NAME: _______

DATE: _____ PERIOD: _

How Do You Find the Theoretical Probability of an Event? (Topic #3)

Theoretical Probability is based on mathematical reasoning - "What should happen?"

The following formula can be used to find the probability, P, that an event will occur.

Theoretical ProbabilityTheoretical ProbabilityThe probability of an event is a ratio that compares the number of
possible outcomes to the number of possible outcomes. $P(event) = \frac{number of favorable outcomes}{number of possible outcomes}$

EXAMPLE 1: Finding the Probability of an Event

There are six equally likely outcomes if a number cube with sides labeled 1 through 6 is rolled.

a) Find P(6) or the probability of rolling a 6. Write your answer as a fraction, percent, and decimal.

$$\overline{6} = 0.1\overline{6} = 16.5^{\circ}/0$$

b) Find the probability of rolling a 2, 3, or 4 on the number cube. Write your answer as a fraction, percent, and decimal.

$$\frac{3}{6} = \frac{1}{2} = 0.5 = 50^{\circ}/_{\circ}$$

PRACTICE: Read each question carefully. Show your work.

1. A coin is tossed. Find the probability of the coin landing on heads. Write your answer as a fraction, percent, and decimal.

$$P(heacis) = \frac{1}{2} = 0.5 = 50\%$$

- 2. A spinner has 10 equal sections labeled A-J. Find the probability of each event. Write each answer as a fraction, percent, and decimal.
 - a) P(F) b) P(D or G) c) P(vowel) $\frac{1}{10}$ $\frac{2}{10} = \frac{1}{5}$ $\frac{3}{10}$ 0.1 $10^{\circ}/_{0}$ 0.2 $20^{\circ}/_{0}$ $30^{\circ}/_{0}$

Complementary events are two events in which either one or the other must happen, but they cannot happen at the same time. *For example*, a coin can either land on heads or *not* land on heads. The sum of the probability of an event and its complement is 1 or 100%.

EXAMPLE 2: Finding the Probability of the Complement

Find the probability of not rolling a 6 in Example 1.

$$P(notb) = \frac{5}{6}$$

PRACTICE: Read each question carefully. Show your work.

3. A bag contains 5 blue, 8 red, and 7 green marbles. A marble is selected at random. Find the probability the marble is not red. TOTPL = 20

$$P(not red) = \frac{12}{20} = \frac{3}{5}$$

4. Mr. Harada surveyed his class and discovered that 30% of his students have blue eyes. Identify the complement of this event. Then find the probability.

$$P(\text{notblue}) = 70^{\circ} = .7 = \frac{7}{10}$$

EXAMPLE 3: Using Theoretical Probability

The theoretical probability that you randomly choose a green marble from a bag is $\frac{3}{8}$. There are 40 marbles in the bag. How many are green?

$$\left(\frac{green}{total}\right) \quad \frac{3}{8} = \frac{x}{40} \qquad 8x = 3(40) \qquad 15 \text{ are green},$$

$$\frac{8x}{8} = \frac{120}{8} \qquad X = 15$$

PRACTICE: Read each question carefully. Show your work.

5. The probability that you randomly draw a short straw from a group of 50 straws is $\frac{9}{25}$. How many are short straws?

$$\left(\frac{5hort}{total}\right) \frac{9}{25} \frac{x}{50} \qquad 25x = 9(50) \qquad 18 \text{ are short}.$$

$$\frac{25x}{25} \frac{450}{25} \qquad \frac{25x}{25} = \frac{450}{25}$$

 $\chi = 18$

6. The theoretical probability that you spin an odd number on a spinner is 0.6. The spinner has 10 sections. How many sections have odd numbers?

$$0.6 = \frac{6}{10} \qquad \left(\frac{0D0}{707RL}\right) \frac{6}{10} = \frac{x}{10} \qquad 10x = 6(10)$$

$$\frac{10x = 60}{10} \frac{10x = 60}{10}$$

$$x = 6$$

6 sections hove odd #s.
 7. The probability that you randomly select a blue crayon from a box of 40 crayons is ³/₂₀. How many are blue crayons?

$$\begin{array}{c} \frac{blue}{total} & \frac{3}{30} = \frac{x}{40} \\ \frac{30}{20} = \frac{x}{40} \end{array} \qquad \begin{array}{c} 20x = 3(40) \\ \frac{30x}{20} = \frac{120}{20} \end{array} \qquad \begin{array}{c} \text{There are 6} \\ \frac{30x}{20} = \frac{120}{20} \end{array} \qquad \begin{array}{c} \text{blue crayons.} \end{array}$$

X = 6

NAME: _____ PROBABILITY

(HEY)

DATE: _____ PERIOD:

HOMEWORK - (Topic #3)

Finding the Theoretical Probability of an Event

Theoretical Probability

The probability of an event is a ratio that compares the number of favorable outcomes to the number of possible outcomes.

 $P(event) = \frac{number of favorable outcomes}{number of possible outcomes}$

1. An event has a theoretical probability of 0.5. What does this mean?

There is a 50°10 chance you will get a favorable outcome.

2. Describe an event that has a theoretical probability of $\frac{1}{4}$.

Use the spinner to determine the theoretical probability of the event.

3. P(1)

4. P (odd number)

$$\frac{3}{6} = \frac{1}{2}$$

5. P (multiple of 2)

6. P (number less than 7)

- $\frac{3}{6} = \frac{1}{2}$ $\frac{6}{6} = 1$
- 7. P(7)

8. P (2 or 5)

$$\frac{0}{6} = 0 \qquad \qquad \frac{2}{6} = \frac{1}{3}$$

9. Each letter of the alphabet is printed on an index card. What is the theoretical probability of randomly choosing any letter not Z?

$$P(not Z) = \frac{a5}{a6}$$

10. On a game show, a contestant randomly chooses a chip from a bag that contains numbers and strikes. The theoretical probability of choosing a strike is ³/₁₀. There are 30 chips in the bag. How many are strikes? Show your work below.

$$\frac{3}{2} \frac{3}{10} = \frac{x}{30}$$
 10x = 3(30) There are 9 strikes.

$$\frac{10x}{10} = \frac{90}{10}$$

$$x = 9$$

The bar graph shows the birthday months of all 200 employees at a local business.

What is the <u>theoretical probability</u> of randomly choosing a person at the business who was born in a month with an R in its name?

What is the theoretical probability of randomly choosing a person at the business who has a birthday in the first half of the year?

